Efficient massively parallel implementation of the ReLPM exponential integrator for advection-diffusion models∗†

نویسندگان

  • A. Mart́ınez
  • L. Bergamaschi
  • M. Caliari
  • M. Vianello
چکیده

This work considers the Real Leja Points Method (ReLPM), [J. Comput. Appl. Math., 172 (2004), pp. 79–99], for the exponential integration of large-scale sparse systems of ODEs, generated by Finite Element or Finite Difference discretizations of 3-D advectiondiffusion models. We present an efficient parallel implementation of ReLPM for polynomial interpolation of the matrix exponential propagators exp (∆tA) v and φ(∆tA) v, φ(z) = (exp (z)−1)/z. A scalability analysis of the most important computational kernel inside the code, the parallel sparse matrix-vector product has been performed as well as an experimental study of the communication overhead. As a result of this study an optimized parallel sparse matrix-vector product routine has been implemented. The resulting code shows good scaling behavior even when using more than one thousand processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A massively parallel exponential integrator for advection-diffusion models

This work considers the Real Leja Points Method (ReLPM), [M. Caliari, M. Vianello, L. Bergamaschi, Interpolating discrete advection-diffusion propagators at spectral Leja sequences, J. Comput. Appl. Math. 172 (2004) 79–99], for the exponential integration of large-scale sparse systems of ODEs, generated by Finite Element or Finite Difference discretizations of 3-D advection-diffusion models. We...

متن کامل

A Parallel Exponential Integrator for Large-Scale Discretizations of Advection-Diffusion Models

We propose a parallel implementation of the ReLPM (Real Leja Points Method) for the exponential integration of large sparse systems of ODEs, generated by Finite Element discretizations of 3D advectiondiffusion models. The performance of our parallel exponential integrator is compared with that of a parallelized Crank-Nicolson (CN) integrator, where the local linear solver is a parallel BiCGstab...

متن کامل

The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations

We implement an exponential integrator for large and sparse systems of ODEs, generated by FE (Finite Element) discretization with mass-lumping of advection-diffusion equations. The relevant exponentiallike matrix function is approximated by polynomial interpolation, at a sequence of real Leja points related to the spectrum of the FE matrix (ReLPM, Real Leja Points Method). Application to 2D and...

متن کامل

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials

We have implemented a numerical code (ReLPM, Real Leja Points Method) for polynomial interpolation of the matrix exponential propagators exp (∆tA)v and φ(∆tA)v, φ(z) = (exp (z) − 1)/z. The ReLPM code is tested and compared with Krylov-based routines, on large scale sparse matrices arising from the spatial discretization of 2D and 3D advection-diffusion equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006